
CLARAty Decision Layer Overview

Tara Estlin
May 16, 2002

CLARAty Decision Layer Team: Tara Estlin and Caroline Chouinard

CLEaR Team: Forest Fisher, Dan Gaines, Steve Schaffer

CMU Collaboration: Reid Simmons

2

Talk Organization

• Decision Layer summary and capabilities
• DL system architecture (as provided by CLEaR)
• Examples of DL domain models
• Code status and documentation

3

Decision Layer Summary and
Capabilities

4

Decision Layer Summary

• Provides intelligent decision-making capabilities
• Designed to contain and enable integration of:

– planning/scheduling techniques
– executive techniques
– other high-level autonomy techniques (e.g. data analysis)

• Also intended to provide flexible interface to CLARAty
Functional Layer

• Current DL instantiation provided by CLEaR Framework
– CLEaR: Closed Loop Execution and Recovery
– Integrates CASPER dynamic planning system (JPL) with TDL

executive (CMU)

5

Decision Layer Capabilities

• Autonomous rover-command generation to achieve high-
level science and engineering goals
– Given:

• Initial state: Rover at position (x,y) w/ certain resource levels
• Desired state (i.e., list of goals): Achieve science activities A, B and C

– Produce:
• Plan (i.e., list of commands) to make desired state true
• E.g., navigate to loc A, raise mast, take image, lower mast, navigate to loc B,

etc.

6

Decision Layer Capabilities, cont.

• Reasoning about state, resource and temporal constraints
• Use of both declarative and procedural domain information

– Activity X uses “20 Watts of Power” and requires “Camera to be on”
– Activity A must be scheduled before Activity B within allowable range

[10 sec, 30 sec]
– Activity Z breaks down into sub-activities Z1, Z2 & Z3
– If condition P holds then perform activity Q

• Timelines represent plan’s effects over time

LOW HIGH MEDIUM HIGH LOW HIGH

RESOURCE

STATE

Time

7

Decision Layer Capabilities, cont.

• Command execution and monitoring
– Dispatch commands to FL and monitor relevant state and resource

information

• Exception handling
– Handle exceptions or failures
– E.g., must retry rock grasp due to initial failure
– E.g., motor overheats so disable arm

• Re-planning in light of changing context or goals
– Modify global plan when conditions change
– E.g., discard science target or traverse due to unexpected low power

reserves
– E.g., add science target due to unexpected opportunity

8

Current Decision Layer Instantiation

9

CLEaR System
• CLEaR integrates two software components:

– CASPER planning and scheduling system
• Organized around activities
• Reasons about resource, state and temporal constraints
• Conflict detection
• Global knowledge of plan and state/resource timelines
• Provides:

– Initial plan generation
– Dynamic re-planning when state or goals changes
– Declarative constructs for model information (e.g., activity pre-conditions and effects)

– TDL executive
• Organized around tasks and task trees
• Reasons about task expansion based on current state
• Event-driven decision-making
• Provides:

– Task decomposition and synchronization
– Task execution and monitoring
– Exception handling
– Procedural constructs for model information (e.g., conditionals, iterative behavior)

• CLEaR task examining how planning and executive capabilities can be
closely integrated to provide a more robust and responsive system

10

Example ASPEN Plan

Plan
Activity

Resource
timelines

State
timelines

11

Sample TDL Task Tree
Traverse to

location

Create and monitor
waypoints

Monitor est.
temporal failure

Send turn
command

Send nav/goto
command

Monitor turn
in place

Turn in place Monitor step
completion

Abort
goto

Abort
monitor

Step to
location

PP

Exec/FL Interface

If “step to loc” fails
…

Task

Legend

Monitor

Task generating
FL command

12

CLEaR High-level View

ASPEN/CASPER
Planner

ASPEN/CASPER
Planner

Goals

Pathplanner
(e.g., TG, D*)

Pathplanner
(e.g., TG, D*)

TDL ExecutiveTDL Executive

Functional Layer / Simulator

Command status;
state/resource updates Commands

Activity status;
state/resource updates

Activities

Path queries;
path lengths

Path queries;
waypoints

Resource queries;
estimations

CLEaR

13

ASPEN/CASPER System Architecture

Timeline
Manager

Activity info
Conflict status

ADB modifications
(e.g., add, modify, delete)

PCN

TCN

Network
Constraint

Propagation

Activity
Database

Real-time
System

Rover
Model

Act, state
& resource

updates

Activities
Activity

permission
updates

Interface /
GUI

Timeline
updates

Search
commands

Activity, timeline, & conflict info

TDL Executive

CASPER

ASPEN

Activities to
executeAct status;

updates

Goals &
Init State

Pathplanner
(e.g., TG, D*)

Pathplanner
(e.g., TG, D*)

Path queries;
path lengths

Domain-specific
information

Legend

System Module

Socket connection

Can be socket
connection or
embedded

Pathplanning
(outside module)

Heuristics

Repair Optimize

Search

14

TDL System Architecture

Task/Agenda
Manager

Task/Agenda
Manager

Executive/FL
Interface

Executive/FL
Interface

Functional Layer / Simulator

Planner/Exec
Interface

Planner/Exec
Interface

Command status;
state updates

Global state
updates

State/resource
updates

Command status;
state updates Commands

Plan
activities

Activity/TL
updates

ASPEN / CASPER Planner

Pathplanner
(e.g., TG, D*)

Pathplanner
(e.g., TG, D*)

Path queries;
waypoints

Commands

AgendaUpdate
Manager

Real-time
Task TreesTask Tree Library

TT/agenda
info

Task mgmt
& state

Register
tasksTask/state

updates

Global
State

Task Database

15

Decision Layer Examples
and

Model Information

16

Example ASPEN Plan

Plan
Activity

Resource
timelines

State
timelines

17

ASPEN Model Organization

• Model Files
– Activities.mdl
– State-variables.mdl
– Resources.mdl

• Init Files
– Init-state.ini
– Requests.ini (goals)

• Functions/code
– Functions.cc (parameter functions)
– Heuristic-functions.cc
– User-search-functions.cc

18

Sample ASPEN Activity Definition
Activity go_to_location {

position fromx, fromy, fromz, x, y, z;
angle fromheading, heading;
distance dist; // est. traverse distance
real speed = 1.655; // meters per min
real goto_power = 330.0; // Watts
int goto_energy; // Watt-hours
…

timeline_dependencies =
<fromx, fromy, fromz, fromheading> <- rover_orientation_sv;

dependencies =
dist <- path_distance(fromx, fromy, x, y, pathplanner),
duration <- traverse_time(dist, speed, duration, …),
goto_energy <- calculate_rover_energy(goto_power, duration);

reservations =
day_night_sv must_be "day",
rover_energy_sv use goto_energy,
health_sv must_be "nominal",
rover_orientation_sv change_to <x,y,z,heading> at_end;

};

19

Sample ASPEN Resource & State Defs

Resource shovel { type = atomic; };

Resource spectrometer { type = atomic;
};

Resource battery {

type = depletable;

capacity = 69; // watts

min_value = 0;

};

State_variable rover_orientation_sv {

// x, y, z, heading

states = <real, real, real, real>;

default_state = <0.0, 0.0, 0.0, 0.0>;

}

State_variable mast_sv {

states = ("stowed", "deployed");

default_state = "stowed";

};

20

Sample TDL Task Tree
Traverse to

location

Create and monitor
waypoints

Monitor est.
temporal failure

Send turn
command

Send nav/goto
command

Monitor turn
in place

Turn in place Monitor step
completion

Abort
goto

Abort
monitor

Step to
location

PP

Exec/FL Interface

If “step to loc” fails
…

Task

Legend

Monitor

Task generating
FL command

21

TDL Model Organization

• Model information contained primarily in *.tdl files
• Procedures in files similar to C++ functions

– TDL based on top of C++ programming language
– TDL modeling language provides extra constructs for task

management (e.g., synchronization, monitoring, etc.)

22

Sample TDL Task Definition
GOAL stepToLocation(TaskData *taskData, double destPosTol, int time_bound)
{

float targetX, targetY, targetZ, targetHeading, priority;
…
if((tdlVars[TIME].getCurrentValue() < time_bound) &&

(!tdlVars[TASK_TEMPORAL_FAILURE].getCurrentValue()))
{
Spawn turnInPlace(taskData,time_bound) With Wait;
if(!commandMap[(int)(tdlVars[CUR_TRAVERSE_TID].getCurrentValue())]. isSucceeded())

{
cout<<"stepToLocation::turnInPlace returned without completion. NOT proceeding with goto\n"<<flush;
…

}
}

if((tdlVars[TIME].getCurrentValue() < time_bound) &&
(!tdlVars[TASK_TEMPORAL_FAILURE].getCurrentValue()))

{
tid = sendNavToCommand(targetX, targetY, targetZ, targetHeading, destPosTol, position_update_frequency);
Spawn stepCompletion(taskData, tid, time_bound) With Wait;
if(!commandMap[tid].isComplete())

{
Spawn abortCurrentGoTo(taskData) With Wait; //send an all-stop
commandMap[tid].complete(FAILED);
return;
}

…

23

Sample TDL Monitor Definition

MONITOR stepCompletion(TaskData *taskData, int tid, int time_bound)
serial, period 0:0:2.0, maximum trigger 1
{

if(commandMap[tid].isComplete())
{
cout<<"stepCompletion: TRIGGER (task compl)\n"<<flush;
TRIGGER();

}
if(tdlVars[TASK_TEMPORAL_FAILURE].getCurrentValue())
{
cout<<"stepCompletion: TRIGGER (temporal failure)\n"<<flush;
TRIGGER();

}
if(tdlVars[TIME].getCurrentValue() >= time_bound)
{
cout<<"stepCompletion: TRIGGER (time bound = …\n”<<,flush;

TRIGGER();
}

…
}

24

Decision Layer Code Status and
Documentation

25

Status of Code
• System requirements

– Currently developed using Sparcworks compiler, Solaris 2.6 & 2.8
– Have created working binary for Solaris 2.7 (telerobotics sparcs)
– Currently porting code to g++ under Linux (TDL already in Linux)

• CLARAty Repository
– Have not checked in yet
– Holding on paperwork and porting code

• Model information
– Have ASPEN and TDL models based on FY01 scenario

• Work for both R7 & R8 with small parameter changes
• Currently maintain two separate models for ASPEN & TDL

– Model(s) primarily reason about traverses, comm and science activities, and power
and memory resources

– DL designed to receives updates from FL for:
• Position, memory & energy
• Currently extending to receive map updates

– Model(s) will need to be extended for additional scenarios and/or as new rover
components are added or tested (e.g., arm, mast, comm)

• System source code may require extensions as well (e.g., optimization)

26

Documentation

• Some documentation exists on CLARAty DL web page
– http://claraty/Development/DL%20Documentation/index.html
– Will be extending this to have step-by-step instructions for running FY01

(and future) scenarios in simulation and on rovers

• ASPEN/CASPER documentation
– http://www-aig.jpl.nasa.gov/public/planning/aspen/
– http://www-aig.jpl.nasa.gov/public/planning/casper/
– ASPEN User’s Manual can be found at:

• http://www-aig.jpl.nasa.gov/public/planning/aspen/usersguide.pdf

• TDL documentation
– http://www-2.cs.cmu.edu/~tdl/
– TDL Quick Reference Manual can be found at:

• http://www-2.cs.cmu.edu/~tdl/tdl.html

